The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?

نویسندگان

  • Jinguang Hu
  • Valdeir Arantes
  • Jack N Saddler
چکیده

BACKGROUND We and other workers have shown that accessory enzymes, such as β-glucosidase, xylanase, and cellulase cofactors, such as GH61, can considerably enhance the hydrolysis effectiveness of cellulase cocktails when added to pretreated lignocellulosic substrates. It is generally acknowledged that, among the several factors that hamper our current ability to attain efficient lignocellulosic biomass conversion yields at low enzyme loadings, a major problem lies in our incomplete understanding of the cooperative action of the different enzymes acting on pretreated lignocellulosic substrates. RESULTS The reported work assessed the interaction between cellulase and xylanase enzymes and their potential to improve the hydrolysis efficiency of various pretreated lignocellulosic substrates when added at low protein loadings. When xylanases were added to the minimum amount of cellulase enzymes required to achieve 70% cellulose hydrolysis of steam pretreated corn stover (SPCS), or used to partially replace the equivalent cellulase dose, both approaches resulted in enhanced enzymatic hydrolysis. However, the xylanase supplementation approach increased the total protein loading required to achieve significant improvements in hydrolysis (an additive effect), whereas the partial replacement of cellulases with xylanase resulted in similar improvements in hydrolysis without increasing enzyme loading (a synergistic effect). The enhancement resulting from xylanase-aided synergism was higher when enzymes were added simultaneously at the beginning of hydrolysis. This co-hydrolysis of the xylan also influenced the gross fiber characteristics (for example, fiber swelling) resulting in increased accessibility of the cellulose to the cellulase enzymes. These apparent increases in accessibility enhanced the steam pretreated corn stover digestibility, resulting in three times faster cellulose and xylan hydrolysis, a seven-fold decrease in cellulase loading and a significant increase in the hydrolysis performance of the optimized enzyme mixture. When a similar xylanase-aided enhancement strategy was assessed on other pretreated lignocellulosic substrates, equivalent increases in hydrolysis efficiency were also observed. CONCLUSIONS It was apparent that the 'blocking effect' of xylan was one of the major mechanisms that limited the accessibility of the cellulase enzymes to the cellulose. However, the synergistic interaction of the xylanase and cellulase enzymes was also shown to significantly improve cellulose accessibility through increasing fiber swelling and fiber porosity and also plays a major role in enhancing enzyme accessibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific

BACKGROUND Currently, the amount of protein/enzyme required to achieve effective cellulose hydrolysis is still too high. One way to reduce the amount of protein/enzyme required is to formulate a more efficient enzyme cocktail by adding so-called accessory enzymes such as xylanase, lytic polysaccharide monooxygenase (AA9, formerly known as GH61), etc., to the cellulase mixture. Previous work has...

متن کامل

Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose

BACKGROUND Enzymatic removal of hemicellulose components such as xylan is an important factor for maintaining high glucose conversion from lignocelluloses subjected to low-severity pretreatment. Supplementation of xylanase in the cellulase mixture enhances glucose release from pretreated lignocellulose. Filamentous fungi produce multiple xylanases in their cellulase system, and some of them hav...

متن کامل

The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed

BACKGROUND Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investi...

متن کامل

Improved yield of α-L-arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover

Background: In the view of depleting resources and ever-increasing price of crude oil, there is an urge for the development of alternative sources to solve the issue of fuel in the coming years. Lignocellulosic biomass is considered to be the most potential alternative resources for fossil fuel. Bioconversion of cellulosic and hemicellulosic components into fermentable sugars is the key step in...

متن کامل

Enzymatic Hydrolysis of Olive Industry Solid Waste into Glucose, the Precursor of Bioethanol

Olive industry solid waste (OISW) is a by-product generated in the process of olive oil extraction. It is a lignocellulosic material consisting of cellulose, hemicelluloses, lignin and other extractives. In this work, a process for hydrolyzing the OISW into its monomers glucose, the precursor of bioethanol was developed.  The hydrolysis process involves two stages: in the first stage, the O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011